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THEORY OF LIFTING SURFACES

By L. Prandtl.

PART I.

RESUME

A, GENERAL BASES OF THE THEORY.

The problem of the flow of a fluid about a 1ifting surface
. of infinite span was solved soms time ago for certain of thess pro-
files by taking as a basis for the determination of 1lift the fol-
lowing formula of ERutta-Joukowski:

A= PV
where A is the lift, V the velocity of the fluid to infinituds, [
the span, and /  the CIRCULATION OF THE VELOCITY,

This way of examining the problem necessarily asssumes the
existence of a polytropic fumction of the spoed potential. But if we
wish to treat the problem of the permanent flow of a fluid about a
surface of fixed span, we must admit the existence of vortexes in
the current. As a matter of fact, according to the theory of Stokss,
the circulation along a closed contour moving in a fluid remains
constant. Now, if a closed contour surrounding a wing leaves it by
slipping along the wing itself, the circulation along this contou_r.
which had a certain valus so long as the contowr swurrounded the wing,
must be mullified; therefore this contowr must cut VORTEX LINES.

The existence of vortexes in a NON-VISCOUS fluid seems to
be in contradiotion with the laws of Lagrange and Helmholtz. But,
as the author has shown in a work on “Flow of Fluids in the Case of

a very slight friction, " we must consider the pfoblem of the flow of -
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NON-V¥1SCOUS fiuids along solid bodies as vhe limit of flow of a very
slightly viscous fluid. In this case the fiuld leaves the body
along a line called the LINE OF SEPARATION, forming ths generation
of a SURFACE QF SCISSION such that the speeds are not the sams on
both sides of the surface, thus forming a vortical layer.

The classical hydrodynamics of perfect fluids must there-
fore be completsd by the following axioms and corcllaries: .
ARIOM I. Vortical laysrs may take their rise at linss of separation.
AXIOM II. Along the sharp edges of a body, infinite speeds can |

only ocewr sxceptionzally.

COROLLARY I. In any bedy, the edges perpendicular to the direction
of the current ars always linss of separation and
are therefore the causes of the formation of a vorti-
cal layer.

COROLLARY II., The intensity of the vortexes in the vortical layer
is such that the veloocity alonz the edge has a constant
valun, or such that ths tendency of the veloclties
to assups infinite values in this placa' is limited as
far as possible,

The d.gtermination of the velocities dus to a certain sys-
tem of vortexes may be simplified by assuming, in place of the body,
"ATTACEED" VORTEXES, the action of which is such that the flow re-
mains the same es when the body is present, and by then determining
the fdrm of the corresponding body. |

Thas relations of Euler may then be maintained on condition
of replacing the forces acting on the bedy by a system of forces
acting in the fluid,

The coz;dition of continuity can also be maintained.
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The conditions at the limits neBessitating the coincidence
of the normal to the speed with the #brmal to the surface of the

body allows of determining the form of ths body.

B. GENERAL THEORY OF PERMANENT FLOW.

In an infinite, hom.ogeneous, ‘and' incompressible fluid.,
flowing slong an ensemble of wings and forming only ona vortical
layer behind each wing, we may write for each point of the fluid

the equation of Bernouilli:

52 V2 | ,
p 4 > -po-f"'%_':po-{-q-.:, . . {1)

where V and p, are the velocity and pressure of the fluid at infin-
ltude, and v and p the velo¢ity and pressure of the fluid at the
point considered.

If we introduce the vectorial notations of Gibbs, so that
tha vectors are designated by hoavy characters, and in which a.b.
indicates the product of scalar valuss, a X b ths product of the

vectors, Euler's equation becomes:

Py v EEE, (2)
wherse k is the force acting on the unit of volume of the fluid and
is due to the system of wings considered. We know that

. 2
v . {77=gra.d§-+ro'bvxv

axd that, in comsequence of egquation (1)

Conssquently

kz FProtvzv . (3)
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The speed of rotation v is dite to the attached vortexss ard t>
the free vortexes; therefore

ot v=Y +€ (4)
The k forces depend only on the attached vortexes Y whilst the
movement of the £ vortexes is not governed by external forces.
?The relation (3) is thus divided into the two following relations:

ALY = v k (5)
£ x v = 0 (5a)

The first represents the law of Kutta-Joukowski for the unit of
volume. The second shows that the lines of vortexes are identical
with the fluid screw. The resultant of the forces exerted by the

wings on the fluid in a lifting space R is:

c . Y W |
R R
K= kd.7"=/3j:ff (Y = var | (8)
The speed v is composed of the speed of the fluid at infinitude V
and the speed v© due to the vortexes ) + £ end which, by the

‘formuls of Biot-Savart is

v=V + W=v+tﬁﬁ[ (7’1iﬁ§r é7 (9)

Consequently:

K= ﬂ.(fff_R 7"17) =V
+/~’f;/fsz/;/y. Y x( (7‘+£;L§ r) a7 ar

4 77 ¢

(10)

where the values accompanied by the merx ' refer to the integration
of the expression (9) in space filled with vortexes. In the case

where all the attached vortexes are parallsl,

ffj[f Y 2(7 52 arar’ =0 (11)

a7l r
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In order tu simplify, it is usefui to donsider a "lifting screw®
having a ssction F ome of which'coincides with the vorsex lines of
the 7 field, |
We havs then:

a7 = dF . ds and asilY

amd we may write, replacing v by its mean valus v in section F

s - E -
lr.=/Jf dsx(v.ffdF."/)=pfdsxv.,7_(12)

which constitutes a geuerslization of the law of Eutta-Joukowski for
a 1lifting screw. .

The formation of a aystam of vortexss behind the lifting sur-
faces has the effect of leaving in tho filuid a certain quantity of
kinetic anérgy, corresponding for a unit of volums to the stress of
‘thelforce K egqual to '

B . V=-k . =22 xv . v°

/J)f x v . ¢

The total power expended in consequence of the total resistamnce W, is

K . V=w . V=fff’}/xv . v0 d7Fr =
SIS e P e e W

When the lifting vortexes are parallel we can neglect the influencs of

" £ on v. we thsn have:

W;‘.T://fR/‘/jf?’xv.%—?g aT a7’ PEEY

C. SIMPLIFICATIONS REQUIRED.
Since in the actual state of mathematics it is impossible to
find a rigorously correct splution of the above relations, certain

simplifications ars necessary. These consist in assuming that the
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force exerted by ths air is very slight, and in retaining only the
lowest terms in the relations. '

Thus, in ell expressions containing the swm of V + v°, the
term v° will not be considered. We shall also supprass the second
term of the resultant K in (10) but, on the contrary, will keepr this
term in the expression of the resistance W, where it preponderates.

Anothsr simplification consists in assuning for each wing
ons single vortex-screw passing through the centers of gravi;ty of the
different sections, the intensity of which in éach section is equal
to the circulation in the seetion.

Thus, l.if we admit a single lifting sorew perpendicular to
the speed V (non-staggered monoplgne), we shall obtain for this case

the following relations:

: x' =% y =00
w(x) = - i f f al _(5.:._1_'.2.%&_!_;37_'6
- e’ x'=ga y= ax! ((x-x') +Yz 2

i

0

b

N . al . _ax (14)
47 dx! x -x!

an
b

A= POV . oax (15}
. _

= /0 ? wadx = / ™ {(x i]: gxdx! 16
W— —— .
V/.E, fa. fa () ' ' ( )

where w is the compoment of the speed v° followilng the normal to the
speed V and the span of the wing is comprised between X = a and x = b.

These formulas only hold good when w is small in relation
to V; now this involves the ammulling of / at the extremities of

the 1ifting screw, for otherwise the speed w would be in inverse
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.proportion to the distance of thd point copsidered at the tir of ike
wing, and this is not so in fack.

If we further assume that the 1lift is constant along the
greater part of the wing and diminishes rapidly to zesro point at the
tips, the vortexss at the tip of each wing msy ve replaced by a sin-
gle vortex-screw.

All the first works of the author wsre based on this con-
sideration of thrse vorter-ascrews. This notion may be suecessfully

employed in examining the interaction of a system of wings.

D. APPLICATIONS TO A SINGLE WING.

Thres problems may be solved by means of the considerations
exlposed. abova?

ist, Given the distribution of 1lift along tho span, as
well as /2 and V, 1t is required to determine the configuration
and resistance of the wirng.

2nd. To determine for a given wing the resistance and ths
distribution of 1lift.

3rd. Given tha total lift, the span, /J and V, it is re-
quired to determine ths distr.ibution of 1ift affording the least
resistancs.

As ragards the first two cases, if we know the relation
existing betwsen the lift and the angle of attack of a wing, we can
at present only determine the angle of attack required for a given
chord, and inversely, the chord raguired for a given angle of attack,

As a matter of fact we may assume that, for the lift of an

element of a wing of finite span to be the same as that of an element

of a wing of infinite span attacked at an angle ¢ , the former el-
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ement must havs an anzle of attack
& =+ arctg w/V (17}
The author gives gn example of the solution of the first
two probleme for a wing of ihfinite span where the lift is a recur-
ring function of the section. A Fourier serial development gives

terms in the form /. =/ cos 4« x. We then have (expression 14)
778
4

W =

and if we assume I~ = Vtcl Qj' where t is the chord of the wing,
¢1 a nurerical coefficient which, according to Mises is equal to
-i-f, we obtain

. ’ ¢
= + —"\‘T'— = C (l + —-:}l ,(H')
and the resistance W for a given span 1

W= __/3.1_8_{'":‘.1_4_ (20)

The inverse problem will be solved by giving a Fourier ser-
ial development to the given function: (L = £(x) and by determining
for each t.erm of this series the corresponding values of (¢ " and
of / , and then taking their sum in order to obtain the values of
the total 1lift and resistance.

A more important example refers to a single wing of finite

span for which

/o =\ 1- %2(75&?: 75‘,{3\’52"—+ 7;,:_% ¢ )

where§=x:b/3 (R
The application of formulas 14, 15, and 16 gives:

v s :
A= Z—/ﬂbV({;lu+;§E+—é§“_+...) (21a)
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2 - '
+—l-7—4— +...}

These formulas enabla us to deal with the problem of minimum
resistance for a given 1lift; we arrive at the conclusion that the
distribution of 1ift along the span must, in this case, take an ellip-

tical form and that the speed w is then constant: We have

TP w2
w = 2 2
= ¥ .4 R (25)

The plans form of the wing should consist of two demi-
ellipses joined on the lins of their main axis equal to the span.
For such wings we can thus bring out the influence of the

Aspect Ratio; in fact, we have

oC = &'+ _;r%' (26)

where S = A/QF, q = -':o—— s F 1is the surface of the wing.

2

The actual resistance W of a wing is equal to the sum of ine
INDUCED RESISTANCE W; and the PROFILE RESISTANCE Wy-
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The coefficients of resistance are respectively:
Cp = Oy t Oy

where cwi =

We can thus pass from a wing for which we know the asrody-
namical characteristics for a given aspsct ratio, to the same wing

baving any aspect ratio whatever.
MM. Betz and Munk, ths author's collaborators, have shown

that ths above formulas determining the influence of the aspect ratio,

may be epplied to all wings, whatever be their plane form.
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